= PRINCETON (g iris
UNIVERSITY hep

5 plots in 5 minutes:
Using GitHub APl to measure software adoption in CMS

Jim Pivarski

Princeton University — IRIS-HEP

August 11, 2020

1/8

Goal: find out how physicists are using software for data analysis \

Workflow from detector — reconstruction — AODs is understood.

Workflow from AODs — analysis — proposed papers is not.

» Surveys are great, except when they're not: response rate
can be correlated with the questions.

» Distributed collaborations: how do we know the survey
questions have reached everyone we want to ask?

» Can we get a more direct method?

2/8

Direct method: look at their code!

GitHub API lets us query users and repositories (URL — JSON).

Can we identify “physicist” users?

» CMSSW has been on GitHub since 2013.
» Assumption: most users who fork CMSSW are CMS physicists.
» Then examine their non-fork repositories.

Why GitHub/CMS? Until recently, all (free) GitHub repos were public, making
them searchable by the API.

Large dataset: 3100 users with 19400 non-fork repos spanning 7 years.

3/8

Plot #1: language choice &

Using GitHub's algorithm for determining a repo’s programming language.

" ® CandC++ :
§~ 2501 & Python
o ® Jupyter :
o .
?g : Python
@ 200 o | ——
o 2
2 &
L O:
@ 150 b C/CH++
g g
o
2 E:
3 =: upyter
£ 1004 7 Jupy
o s: —
5] O: (which is
.§ nearly all
S 504 : Python)
G té
2 i é
& : '
0 . == : : . .
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Repository creation date
4/8

Plot #2: language choice by user

Same thing, but with average number of repos per user instead of total repos.

T
¢ CandC++

9, g
3 & Python L
3 ¢ Jupyter ‘g
£ 1.2 h
% * i
L o
0 £
21.04 =
o o
(%] wn:
Z :
- 0.8 e
g N
3
5 0.6 ?
-‘% L 4 Python
g. ——
€ 04l C/CH++
= O
c Jupyter
[
g 0-21 + * ¢
g
Z
0.0 -

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Repository creation date 5/8

Plot #3: search for package imports

Number of repos that match a search string (within C/C++ or Python/Jupyter files).

200 n
® C++ "include TFile"
» 1754 @ Python "ROOT.TFile"
=
i ® Python "uproot"
[S)
g 1501 @ Python "root-numpy"
g ® Python "iminuit"
3 125 A _g
= £
o .
£ 100 1 o: +
2 hat ROOT in C++
[@: —
v 751 3 l— PyROOT
k4 €:
2 :
S = + +
n .
2 504 &
o E: + Uproot
g ; p
O 751 :
L B root-numpy
9 & iminuit
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Repository creation date
6/8

Plot #4: what machine learning packages do they use? ' &

Same technique. Dominance of Scikit-Learn (over TensorFlow and Torch) is surprising.

80 o
@ Python "sklearn"

«» 704 ©® Python "import tensorflow"
2
i ® Python "import torch" Scikit-Learn
o) -
§ 60 @& Python "import xgboost"
< é Python "TMVA"
2501 ¢ o+ TMVA"
[
5 ® C++ "include torch"
£ 40
S ® C++ "include tensorflow" TensorFlow
2 [
.; 30 - C++ "include xg.boost" l
3 / C++ TMVA
L E—
2 5. ® 9 Plython TMVA
£ [— pvTorcl
0 yTorch
Z : [~ Python
O 104 : y

10 : # + + XGBoost

* P WY [} o 'YYYE | "++ non-ROOT
0 ® a 00 ; : : : : T T machine
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 |earning

Repository creation date 7/8

Plot #5: Did machine learning drive Python adoption?

Not really. Basic analysis tools (NumPy, Matplotlib, Pandas) outweigh Pythonic ML.

3001 ¢ C++ "include TFile" or Python "ROOT.TFile" & Python "import pandas"

9 & Python "import numpy" & All Python machine learning packages
i 2501 @ Python "matplotlib" ® Python "import uproot"
[H
g
S 2001 = NumPy
E O: L
8 &
5 b - Matplotlib
g 150 4 e | C++ ROOT
5] = & PyROOT
'; & | — Pandas
23 100 1 5 all machine
1"‘? : +— learning
5’- xcept TMVA
= 504
© —— Uproot

0 -4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Repository creation date

8/8

